Skip to contents
-
dh.anyData()
- Describe whether variables are completely missing for each cohort
-
dh.buildModels()
- Build Exposure-Outcome Models with Optional Covariates
-
dh.classDiscrepancy()
- Describes the class of one or more variables across cohorts and indicates differences
-
dh.createTableOne()
- Creates tables in useful formats for including in manuscripts
-
dh.findVarsIndex()
- Return return indices of column names in server-side dataframe
-
dh.getAnonPlotData()
- Extracts an anonymised version of serverside data which can be used to create bespoke plots
-
dh.getRmStats()
- Produces descriptive statistics based on repeated measures data which it would be useful to report in papers.
-
dh.getStats()
- Produces a range of descriptive statistics in a useful format
-
dh.lmTab()
- Extracts coefficients and confidence intervals from linear models
-
dh.lmeMultPoly()
- Fit multiple mixed effects models containing different combination of fractional polynomials
-
dh.localProxy()
- Generate a local proxy dataframe to enable local auto-completion in RStudio
-
dh.makeAgePolys()
- Produces multiple transformations of the age term for fractional polynomial analyses
-
dh.makeIQR()
- Transforms variables based on their interquartile range
-
dh.makeLmerForm()
- Make formulae for fitting multiple fractional polynomial models
-
dh.meanByGroup()
- Describes a numeric variable by strata of another numeric grouping variable.
-
dh.metaManual()
- Wrapper to manaully perform two-stage meta-analysis using
metafor
-
dh.metaSepModels()
- Function in progress to meta-analyse separate models.
-
dh.multGLM()
- Loop multiple GLM models and handle errors & non-convergence
-
dh.pool()
- Perform Rubin's pooling on a list of imputed generalized linear models.
-
dh.predictLmer()
- Gets predicted values based on a new dataframe for lmer models
-
dh.quartileSplit()
- Splits a continuous variables into four quartiles
-
dh.stablisedWeights()
- Generate Stabilized Weights Using ds.glmSLMA output and outcome proportions.
-
dh.trimPredData()
- Trims predicted values based on min and max values provided
-
dh.zByGroup()
- Creates z-scores within specified bands